Optimizing Apache HoraeDB for High-
Cardinality Metrics at AntGroup

Jiacai Liu (XIZRN7)
Senior Engineer @ Ant Group

Community Over Code NA, October 2024. PDF

https://www.antgroup.com/en
https://slides.liujiacai.net/optimize-horaedb/?print-pdf

About ME

Senior Engineer @ Ant Group
Apache HoraeDB PPMC Member
Programming language enthusiast
= Rust: 70K loc
= Zig: 10K loc
Misc
= Emacser since 2016
» Podcast(Chinese): RustTalk, EmacsTalk
= github.com/jiacai2050

https://www.antgroup.com/en
https://github.com/apache/horaedb/
https://ziglang.org/
https://rusttalk.github.io/
https://emacs.liujiacai.net/
https://github.com/jiacai2050

Agenda

1. What's time series

2. What's Apache HoraeDB
1. Core design

3. Write path optimization

4. Query path optimization

5. Looking Forward

1. What's time series

Machine Load

3.75

1.25

0 3 o)|
15:00 15:01 15:02 15:03 15:04 15:05

host=192.168.0.1,cluster=A host=192.168.0.2,cluster=B

e A collection of time-based data points that can be
connected into (time) lines.
e Use tags to differentiate between lines

Characteristics

Writes

Reads

! N —— P— o — ——— — — |
e

=)

—

»>
Time (~weeks)

e Vertical writes, horizontal(-ish) reads

Scenarios

e |OT
e APM (Application Performance Monitoring)

e Weather Forecasting
e Stock Market Analysis

Time series database

Specialized database that efficiently stores and retrieves time-
stamped data

e Prometheus

e |InfluxDB

e TimescaleDB

e Apache HoraeDB

Challenge

High write throughput
High-Cardinality tags, lead to BIG index
Real-time OLAP like query pattern

192.168.0.1

TSID Time IP Env Value
1 10:00 |192.168.0.1 prod 50.1
2 10:00 |192.168.0.1| test 10.2
3 10:00 |192.168.0.2| prod 29.5
4 10:00 |192.168.0.2 test 4.5
5 10:00 |192.168.0.3| prod 431
6 10:00 |192.168.0.3| dev 20.2

192.168.0.2

Y

1,2

192.168.0.3

Y

3,4

Env

prod

Y

5,6

dev

Y

Inverted Index

Y

1,2,5

test

Y

Y

2,4

2. What's Apache HoraeDB

Distributed, cloud native time-series database

2.1. Core design

e Separating compute from storage with object storage
e FDAP stack
e BRIN(Block range index)

= Min/Max Index

= Xor Filters(faster, smaller than bloom filter)

https://www.influxdata.com/glossary/fdap-stack/
https://en.wikipedia.org/wiki/Block_Range_Index
https://arxiv.org/abs/1912.08258

Storage-Compute Separation

Node 1

Shard 1 Shard 2

i T2

Memtable | ,

25

Object Store(S3/GCS....)

e Table data are distributed in shards(also known as tablets)
e Each node has N shards
e Mapping of table/shard/node are stored in horaemeta

https://horaedb.apache.org/docs/design/clustering/

LSM-like engine

Write memtable memtable

A

(active) (readonly)

flush

A4

WAL levelO a sst sst

compact

(e

leveld sst sst

ObjectStore

Read

Manifest

FDAP stack

e (Arrow) Flight, RPC framework based on Arrow data
e DataFusion, Query engine

e Arrow, Memory format

e Parquet, Storage format

How it works for time series

Row 1
Row 2
Row 3
Row 4

session_id
1331246660
1331246351
1331244
1331261196

timestamp

3/8/2012 2:44PM
3/8/2012 2:38PM
3/8/2012 2:09PM
3/8/2012 6:46PM

Traditional Memory Buffer

Arrow: columnar memory format

1331246
3/8/2012 2:44PM
99. .155.225
1331246351
3/8/2012 2:38PM
65.87.165.114
1331244570
3/8/2012 2:09PM
71.10.106.181
1331261196

3/8/2012 6:46PM

76.102.156.138

session_id

timestamp

source_ip

source_ip

99.155.155.225
65.87.165.114
71.10.106.181
76.102.156.138

Arrow Memory Buffer seLEcT * FROM clickstream

WHERE session_id = 1331246351
13312

1331246351
1331244570

1331261196

Intel CPU
3/8/2012 2:44PM

3/8/2012 2:38PM

3/8/2012 2:.09PM

3/8/2012 6:46PM

99.155.155.225
65.87.165.114
71.10.106.181
76.102.156.138

for flat an

d hierarchica

| data

Data Sources

SV

Q

il Lk

DataFrame

Parquet \ Q

LogicalPlans | me)

”

U

Optimizations /
Transformations

E=I

ExecutionPlan =——"1

U

Optimizations /
Transformations

Lo 52

DataFusion

S

Expression Eval

HashAggregate

® o -

Join

Sort

Query FrontEnds

DataFusion: LLVM-like Infrastructure for Databases

Plan Representations
(DataFlow Graphs)

Optimized Execution
Operators
(Arrow Based)

3. Write path optimization

e Metrics are sharded with partitioned table
= Hash
= Range
= Round-robin
e Reduce IO as possible as we can
» Group commit for WAL
= Skip building the index for recently-written metrics

4. Query path optimization

e Reduced IO without inverted index
= Memtable
s SST
e Distributed query
= Partitioned table routing
m Distributed execution

Reduced 10 — Memtable

Y
SkipList

rrrrr

e Active: Write optimized
e Frozen: Read optimized

Reduced 10 — SST

Filter

ip =192.168.0.1

env=prod

min/max

Xor

IP1

ENV1

P2

Index

ENV2

IP3

ENV3

SST

Reduced 10 — SST

Filter
ip=192.168.0.1
?
env=prod | min/max '
1 Xor IP2 ENV2 SST
Index

Order is important!

OLD NEW

192.168.0.1 192.168.0.1
192.168.0.2 192.168.0.1
192.168.0.3 192.168.0.2
192.168.0.1 Sort
:{> |::>
192.168.0.1 192.168.0.2
192.168.0.2 192.168.0.3
192.168.0.3 192.168.0.3

Automatic clustering based on history queries

https://docs.snowflake.com/en/user-guide/tables-auto-reclustering

Distributed

s)

Node 1

=
— I

Node 2 Node 3 Node n

BN

Open as a "normal" table (single point hotspot)

=

-

Open as a "virtual" table

Aggregation Pushdown

SELECT
time bucket(timestamp , '5 min') AS “timestamp,
SUM(value) AS “value sum’

FROM
“table”

WHERE
“timestamp® >= '2023-12-15 07:17:00"'
AND “timestamp™ < '2023-12-14 08:17:00'
AND ((~col2™ IN ('T')))

GROUP BY
time bucket (" timestamp , '5 min')

Aggregator

DataFusion
Builtin
Filter
TableScan
Custom
Parquet Memtable
Reader Reader

Simplified physical plan

pub enum AggregateMode {

/// Partial aggregate that can be applied in parallel across input part
Partial,

/// Final aggregate that produces a single partition of output
Final,

AggregateMode

https://github.com/ceresdb/arrow-datafusion/blob/89ee9b0c9b27324a3662e5b50b56902eef7d7749/datafusion/physical-plan/src/aggregates/mod.rs#L64

ProjectionExec:
AggregateExec: mode=FinalPartitioned, gby=[..], aggr=[SUM(value)],
CoalesceBatchesExec:
RepartitionExec:
AggregateExec: mode=Partial, gby=[..], aggr=[SUM(value)]
ProjectionExec:

ScanTable: table=my_table, filters=[..] Pushdown

0. Looking Forward

e Build inverted index based on query histories
e Teach query engine aware of data distribution

patterns(TSID)
e Release more ASF-compliant versions, growing

community

Thanks

e https://horaedb.apache.org
e https://github.com/apache/horaedb

https://horaedb.apache.org/
https://github.com/apache/horaedb

