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1. What's time series
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e A collection of time-based data points that can be
connected into (time) lines.
e Use tags to differentiate between lines



Characteristics
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e Vertical writes, horizontal(-ish) reads



Scenarios

e |OT
e APM (Application Performance Monitoring)

e Weather Forecasting
e Stock Market Analysis



Time series database



Specialized database that efficiently stores and retrieves time-
stamped data

e Prometheus

e |InfluxDB

e TimescaleDB

e Apache HoraeDB



Challenge

High write throughput
High-Cardinality tags, lead to BIG index
Real-time OLAP like query pattern




192.168.0.1

TSID Time IP Env Value
1 10:00 |192.168.0.1 prod 50.1
2 10:00 |192.168.0.1| test 10.2
3 10:00 |192.168.0.2| prod 29.5
4 10:00 |192.168.0.2 test 4.5
5 10:00 |192.168.0.3| prod 431
6 10:00 |192.168.0.3| dev 20.2
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2. What's Apache HoraeDB



Distributed, cloud native time-series database



2.1. Core design

e Separating compute from storage with object storage
e FDAP stack
e BRIN(Block range index)

= Min/Max Index

= Xor Filters(faster, smaller than bloom filter)


https://www.influxdata.com/glossary/fdap-stack/
https://en.wikipedia.org/wiki/Block_Range_Index
https://arxiv.org/abs/1912.08258

Storage-Compute Separation
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Object Store(S3/GCS....)

e Table data are distributed in shards(also known as tablets)
e Each node has N shards
e Mapping of table/shard/node are stored in horaemeta


https://horaedb.apache.org/docs/design/clustering/

LSM-like engine
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FDAP stack

e (Arrow) Flight, RPC framework based on Arrow data
e DataFusion, Query engine

e Arrow, Memory format

e Parquet, Storage format



How it works for time series

Row 1
Row 2
Row 3
Row 4

session_id
1331246660
1331246351
1331244
1331261196

timestamp

3/8/2012 2:44PM
3/8/2012 2:38PM
3/8/2012 2:09PM
3/8/2012 6:46PM

Traditional Memory Buffer

Arrow: columnar memory format
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3/8/2012 2:09PM
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3/8/2012 6:46PM

76.102.156.138

session_id

timestamp
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source_ip

99.155.155.225
65.87.165.114
71.10.106.181
76.102.156.138

Arrow Memory Buffer  seLEcT * FROM clickstream

WHERE session_id = 1331246351
13312

1331246351
1331244570

1331261196

Intel CPU
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3/8/2012 2:38PM

3/8/2012 2:.09PM
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3. Write path optimization



e Metrics are sharded with partitioned table
= Hash
= Range
= Round-robin
e Reduce IO as possible as we can
» Group commit for WAL
= Skip building the index for recently-written metrics




4. Query path optimization



e Reduced IO without inverted index
= Memtable
s SST
e Distributed query
= Partitioned table routing
m Distributed execution



Reduced 10 — Memtable
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e Active: Write optimized
e Frozen: Read optimized



Reduced 10 — SST

Filter

ip =192.168.0.1

env=prod
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Reduced 10 — SST

Filter
ip=192.168.0.1
?
env=prod | min/max '
1 Xor IP2 ENV2 SST
Index

Order is important!



OLD NEW

192.168.0.1 192.168.0.1
192.168.0.2 192.168.0.1
192.168.0.3 192.168.0.2
192.168.0.1 Sort
:{> |::>
192.168.0.1 192.168.0.2
192.168.0.2 192.168.0.3
192.168.0.3 192.168.0.3

Automatic clustering based on history queries


https://docs.snowflake.com/en/user-guide/tables-auto-reclustering

Distributed
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Open as a "normal" table (single point hotspot)
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Open as a "virtual" table



Aggregation Pushdown

SELECT
time bucket( timestamp , '5 min') AS “timestamp,
SUM( value ) AS “value sum’

FROM
“table”

WHERE
“timestamp® >= '2023-12-15 07:17:00"'
AND “timestamp™ < '2023-12-14 08:17:00'
AND ((~col2™ IN ('T')))

GROUP BY
time bucket (" timestamp , '5 min')



Aggregator

DataFusion
Builtin
Filter
TableScan
Custom
Parquet Memtable
Reader Reader

Simplified physical plan



pub enum AggregateMode {

/// Partial aggregate that can be applied in parallel across input part
Partial,

/// Final aggregate that produces a single partition of output
Final,

AggregateMode


https://github.com/ceresdb/arrow-datafusion/blob/89ee9b0c9b27324a3662e5b50b56902eef7d7749/datafusion/physical-plan/src/aggregates/mod.rs#L64

ProjectionExec:
AggregateExec: mode=FinalPartitioned, gby=[..], aggr=[SUM(value)],
CoalesceBatchesExec:
RepartitionExec:
AggregateExec: mode=Partial, gby=[..], aggr=[SUM(value)]
ProjectionExec:

ScanTable: table=my_table, filters=[..] Pushdown



0. Looking Forward

e Build inverted index based on query histories
e Teach query engine aware of data distribution

patterns(TSID)
e Release more ASF-compliant versions, growing

community



Thanks

e https://horaedb.apache.org
e https://github.com/apache/horaedb


https://horaedb.apache.org/
https://github.com/apache/horaedb

